TRANSPORTATION FUNDING

City Council Study Session February 24, 2014

Key Issue

 How should the projected Street Fund deficit beginning in 2016 be addressed?

Options

- Defer, cut, or scale back planned projects in 2015 and beyond.
- 2. Change current policies related to:
 - a) Arterial street life cycle (20-25 years)
 - b) Residential street life cycle (30-35 years)
 - c) Traffic level of service standard
- 3. Institute a new revenue source:
 - a) King County (TBD) ballot measure (4/22/14)
 - b) Mercer Island specific TBD effective 1/1/15
 - Council approved: Up to \$20 license fee per vehicle
 - ii. Voter approved: For license fee >\$20 per vehicle

Street Fund Projected Deficit

 Projected Street Fund balance per adopted 2013-2014 Budget:

2013	2014	2015	2016	2017	2018
Forecast	Forecast	Forecast	Forecast	Forecast	Forecast
\$767	\$1,398	\$593	(\$856)	(\$1,232)	(\$1,876)

Note: Numbers are shown in thousands.

Street Fund Projected Deficit

- Declining fund balance is primarily result of:
 - o Impact of "Great Recession" on REET in 2008-2012
 - Decision to take advantage of a very favorable bid environment in 2009-2012
 - Decision to take calculated risk in 2013-2014 that REET would recover faster than projected
 - Fewer state transportation grants available in 2011-2014

Option 1: Defer, Cut, or Scale Back Future Projects

- A stop gap measure
- But there are always needs (ongoing & new)
 - o Arterial & residential street maintenance (chip seal/overlays)
 - o PBF Plan implementation
 - School District bond measure increases interest and needs
 - × SE 40th St. Roadway capacity improvements
 - \times Pedestrian improvements near school and north of SE 40 $^{\rm th}$
 - × Neighborhood traffic control north of SE 40th
 - × District will pay their proportionate share

Option 1: Defer, Cut, or Scale Back Future Projects

- But there are always needs (cont.)
 - o Resident concerns
 - × eg: speeding on 84th Ave SE and absence of pedestrian facilities
 - Pedestrian facilities will be proposed in 6 Year TIP
 - Speeding concern is under review through neighborhood traffic program. Could result in a TIP project.
- Option 1 not realistic without options 2 & 3

Option 2: Change Current Policies

Pavement Condition Ratings

- PCI Procedure and Data Collection
- Visual Pavement Distresses
- Understanding PCI Rankings
- Pavement Life Cycle and Repair Strategies
- PCI Results

What is Pavement Management?

Pavement management can be defined as:

Planning the maintenance and repair of a roadway network to optimize pavement conditions of the overall network.

Applying the proper repairs at the proper time for the least cost.

Some "action" tools for PM:

crack sealing chip seal reconstruction patching asphalt overlay

Some "planning" tools for PM:

network inventory construction history pavement condition surveys 6-year plans (TIP, utilities) budgets

What is Pavement Condition Index (PCI)?

• Pavement Condition Index (PCI) is: (courtesy of ASTM D6433-07)

- a <u>numerical indicator</u> that rates the surface condition of the pavement
- a measure of the present condition of the pavement based upon the <u>visual distresses</u> observed on the surface
- a rational and objective <u>basis for determining</u> maintenance and repair needs and priorities
- PCI is not:
 - a measurement of structural capacity
 - a transportation plan
 - a one-time-only project

Pavement Condition Index Rating Process

FAILED

- ASTM D6433 "Standard Procedure for Roads and Parking Lots Pavement Condition Index Surveys"
- Developed by US Army Corp of Engineers
- 0-100 rating scale
- Deduct values are calculated based on quantity and severity (L, M, H) of visual distresses found
- Area based calculations
- 19 visual distresses for asphalt pavement

Pavement Distress Examples

Alligator Cracking Block Cracking Longitudinal Cracking Transverse Cracking Reflective Cracking

Pavement Distress Examples

Bumps and Sags Depressions Patches Potholes

Understanding the PCI... SATISFACTORY (85-71)

Few distresses
 Some cracking
 (longitudinal and transverse)
 Maybe some patches

71-NMW

81-ICW

May be a candidate for crack sealing (keeps water out)

Understanding the PCI... FAIR (70-56)

Localized distresses:
 Alligator cracking
 Other cracking
 Patches

62-85th A

64-83rd A

May need: crack sealing, chip sealing, slurry seal, patching, thin overlay
Sealing will keep water out of the base

Understanding the PCI... POOR (55-41)

Distresses are much larger
Cracking has increased in extent and severity
Minor base failures

52- 70th A

42- 64th St

Candidate for a double chip seal or an overlay

Understanding the PCI... VERY POOR (40-26)

Localized base failures Rutting and distortions visible Extensive cracking

Extensive patching

43-82nd A

37- 61st St

Candidate for thick overlay. Likely need to remove and replace large areas of pavement prior to overlay.

Understanding the PCI... FAILED (25-0)

Extensive high severity cracking
 Rutting
 Base failures

7-73rd A

Past point of an overlay
Needs reconstruction (remove existing pavement, some re-grading and base repair, repave)
Doesn't get more costly than this

Mercer Island PCI Results-2013

Summary

- Our street network is healthy
 - 67% of network has PCI above 70
- To maintain our network in its current state, we need to:
 - Pave approx. 3% of our system annually, or 2.75 miles
 - Invest approx. \$900,000 annually into our pavements
- Typical costs for: chip sealing patch and overlay rebuild
 FAIR \$140K per mile \$350K per mile \$350K per mile \$350K per mile \$500K p
- It is much less expensive to maintain good roads than rebuild bad ones
- Extending current Life Cycle planning will significantly increase costs in the long run

PCI maps: Arterial, Residential, Residential 0-70

Option 2: Change current policies

- Comprehensive Plan establishes roadway congestion standard at Level of Service (LOS) C.
 - Most cities have worse LOS of D, E, or F. This is average or typical.
 - o Only MI and few others have C
 - Estimate of current and future MI roadway congestion -LOS map

Option 2: Change current policies

LOS C (high standard) vs C in school (average)

- Requires signals, widening, turn lanes, etc. to maintain C
- Unintended consequences
 - Residential intersections w/arterials treated the same
 - Improvements compete with space for PBF, parking, and other improvements
 - ROW acquisition/condemnation
 - "Urban" feel more hardscape and fewer trees/canopy
- Consider changes to LOS standard during update of Comp Plan

Option 3: TBD

- A Transportation Benefit District is:
 - A quasi-municipal corporation and independent taxing district
 - Created to acquire, construct, improve, provide, and fund transportation improvements

• Approved uses include:

- Maintenance of existing city streets and trails
- o Investments in:
 - High capacity transportation
 - Public transportation
 - Pedestrian and bicycle facility improvements
 - Transportation demand management

Option 3: TBD

King County TBD ballot measure

 Goes to voters on 4/22/14
 If approved, MI would receive \$598K annually

 Mercer Island TBD approved by Council

Limited to \$20 annual license fee per vehicle
Would generate \$350K annually

Mercer Island TBD approved by voters

- Voter approval required to establish an annual license fee per vehicle >\$20
- Example: \$40 license fee = \$700K annually

Initial Recommendation

- Maintain current residential and arterial street repaving cycles
 - Strongly recommended by the City Engineer, Assistant City Engineer, and Street Engineer
- Reduce traffic LOS standard from C to D or E
- If KC ballot measure passes, the Street Fund's deficit situation may or may not be resolved
 - o Depends on accuracy of KC revenue estimate
 - Depends on cost of traffic capacity and pedestrian improvements related to MISD construction projects
 - o Depends on Council's appetite for new projects

Initial Recommendation (cont'd)

 If KC ballot measure fails, staff will prepare a 6 year TIP/CIP based on the latest REET forecast with and without a MI specific TBD (\$350K/yr)

• May 19th: First TIP agenda bill

- o Jun 16th: Second TIP agenda bill & CIP Preview agenda bill
- Council decision whether or not to create a MI specific TBD:
 Jun 16th or Nov 17th meeting
- If KC ballot measure fails AND if Council opts to not create a MI specific TBD, then a very light TIP will be proposed for 2015-2016

Pavement Condition Index (PCI)

• Why select ASTM D6433?

- Used on 2009 project
- Other agencies use
- Consultants were all familiar with it

	Centerline	PCI	
City	miles	Formula	Frequency
Bellevue	412 miles	D6433	2 years
Burien	140 miles	D6433	2007
Federal Way	233 miles	D6433	Varies**
Issaquah	107 miles	MRC*	2 years*
Kirkland	245 miles	WSDOT	Varies ***
Seatac	78 miles	D6433	2 years

Lessons learned from 2009 project

- Don't let consultant divide up your street network
 - Staff divided street network into over 700 segments, based on length, intersections, previous project limits
 - Corrected errors in street network database

Mercer Island PCI Results-2013

Primary indicators of network health

- 1. Network average PCI
- 2. Amount of Backlog (PCI below 50)
- 3. Amount of Good (PCI over 85)

OVERALL STREET NETWORK PCI SCORES						
RATIN	IG SCALE	MILES	PERCENT			
Good	86-100	26.25	32.2%			
Satisfactory	71-85	29.53	35.3%			
Fair	56-70	17.05	20.6%			
Poor	41-55	6.66	8.2%			
Very Poor	26-40	1.75	2.0%			
Failed	0-25	2.26	1.7%			
	TOTAL NETWORK	83.5	100.0%			

Anomalies found in data:

- PCI scores have sensitivity to Alligatoring, Rutting, and Distortion distresses, as these have heavy deduct values in D6433.
- PCI scores have sensitivity to small area.
- What does this mean? Combine a short network segment with these distresses and PCI score drops significantly.